$ANT_{\geq 0}$ teller antall tall som er større enn eller lik $0$ i listen.
Her er en utregning:
$ANT_{\geq 0}( {{\big(}} 4, -7, 10, 3, -2, 7, 0 {{\big)}} ) $
$= ANT_{\geq 0}( 4 :: {{\big(}} -7, 10, 3, -2, 7, 0 {{\big)}} ) $
$= 1 + ANT_{\geq 0}( {{\big(}} -7, 10, 3, -2, 7, 0 {{\big)}} ) $
$= 1 + ANT_{\geq 0}( -7 :: {{\big(}} 10, 3, -2, 7, 0 {{\big)}} ) $
$= 1 + ANT_{\geq 0}( {{\big(}} 10, 3, -2, 7, 0 {{\big)}} ) $
$= 1 + ANT_{\geq 0}( 10 :: {{\big(}} 3, -2, 7, 0 {{\big)}} ) $
$= 1 + 1 + ANT_{\geq 0}( {{\big(}} 3, -2, 7, 0 {{\big)}} ) $
$= 1 + 1 + ANT_{\geq 0}( 3 :: {{\big(}} -2, 7, 0 {{\big)}} ) $
$= 1 + 1 + 1 + ANT_{\geq 0}( {{\big(}} -2, 7, 0 {{\big)}} ) $
$= 1 + 1 + 1 + ANT_{\geq 0}( -2 :: {{\big(}} 7, 0 {{\big)}} ) $
$= 1 + 1 + 1 + ANT_{\geq 0}( {{\big(}} 7, 0 {{\big)}} ) $
$= 1 + 1 + 1 + ANT_{\geq 0}( 7 :: {{\big(}} 0 {{\big)}} ) $
$= 1 + 1 + 1 + 1 + ANT_{\geq 0}( {{\big(}} 0 {{\big)}} ) $
$= 1 + 1 + 1 + 1 + ANT_{\geq 0}( 0 :: {{\big(}} {{\big)}} ) $
$= 1 + 1 + 1 + 1 + 1 + ANT_{\geq 0}( {{\big(\big)}} ) $
$= 1 + 1 + 1 + 1 + 1 + 0 $
$= 5 $